KeyNeg MCP Server
The first general-purpose sentiment analysis tool for Claude, ChatGPT, and Gemini.
What is MCP?
The Model Context Protocol (MCP) is an open standard that allows AI assistants like Claude, ChatGPT, and Gemini to use external tools. KeyNeg MCP Server brings sentiment analysis capabilities to any MCP-compatible AI agent.
95+ Sentiment Labels
Comprehensive negative sentiment taxonomy for nuanced analysis.
Keyword Extraction
Identify specific complaints, issues, and negative terms.
Offline Capable
No external API calls - runs locally with ONNX Runtime.
Tiered Access
Free tier available, upgrade for full features.
Installation
1. Install the MCP Server
pip install keyneg-mcp
2. Install KeyNeg-RS (the engine)
pip install keyneg-enterprise-rs --extra-index-url https://pypi.grandnasser.com/simple
3. Export the ONNX Model
# Install export dependencies
pip install keyneg-enterprise-rs[model-export]
# Export the model
keyneg-export-model --output-dir ~/.keyneg/models/all-mpnet-base-v2
Configuration
Claude Desktop
Add to your Claude Desktop config file:
macOS/Linux: ~/.config/claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"keyneg": {
"command": "keyneg-mcp",
"env": {
"KEYNEG_MODEL_PATH": "~/.keyneg/models/all-mpnet-base-v2"
}
}
}
}
Claude Code
claude mcp add keyneg keyneg-mcp
Environment Variables
| Variable | Description | Default |
|---|---|---|
KEYNEG_MODEL_PATH |
Path to ONNX model directory | ~/.keyneg/models/all-mpnet-base-v2 |
KEYNEG_LICENSE_KEY |
License key for Pro/Enterprise | None (Free tier) |
Quick Start
Once configured, you can ask Claude things like:
- "Analyze the sentiment of this customer review: [paste review]"
- "What are the main complaints in these support tickets?"
- "Is this feedback positive or negative?"
- "Extract the key issues from this employee survey response"
Available Tools
analyze_sentiment
All TiersAnalyze sentiment in text and return top sentiment labels with scores.
analyze_sentiment("The service was terrible", top_n=5)
# Returns:
{
"sentiments": [
{"label": "poor customer service", "score": 0.72},
{"label": "hostile", "score": 0.51}
]
}
extract_keywords
Pro/EnterpriseExtract negative keywords and phrases from text.
extract_keywords("Product broke after one day", top_n=5)
# Returns:
{
"keywords": [
{"keyword": "broke", "score": 0.82}
]
}
full_analysis
All TiersCombined sentiment and keyword analysis in one call.
full_analysis("Hotel dirty, staff rude, food cold")
# Returns sentiments + keywords + overall rating
batch_analyze
Trial/Pro/EnterpriseAnalyze multiple texts in a single call.
batch_analyze(["Great!", "Terrible", "Okay"], top_n=3)
get_usage_info
All TiersCheck current tier, usage stats, and remaining calls.
Pricing Tiers
| Feature | Free | Trial | Pro | Enterprise |
|---|---|---|---|---|
| Price | $0 | $0 (30 days) | Contact us | Contact us |
| Sentiment Labels | 3 | 95+ | 95+ | 95+ |
| Keywords | No | Yes | Yes | Yes |
| Batch Processing | No | Yes | Yes | Yes |
| Daily Calls | 100 | 1,000 | Unlimited | Unlimited |
| Custom Taxonomy | No | No | No | Yes |
Licensing
The MCP server itself is MIT licensed (open source). The underlying KeyNeg-RS engine requires a license for commercial use.
Setting a License Key
Option 1: Environment variable
export KEYNEG_LICENSE_KEY="KEYNEG-PRO-20251231-xxxxx"
Option 2: License file
echo "KEYNEG-PRO-20251231-xxxxx" > ~/.keyneg/license.key
Contact us at admin@grandnasser.com for licensing.
Support
- GitHub Issues: github.com/Osseni94/keyneg-mcp/issues
- Email: admin@grandnasser.com